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Abstract: We investigate the effects of non-commutative geometry on the topological

aspects of gauge theory using a non-perturbative formulation based on the twisted reduced

model. The configuration space is decomposed into topological sectors labeled by the

index ν of the overlap Dirac operator satisfying the Ginsparg-Wilson relation. We study

the probability distribution of ν by Monte Carlo simulation of the U(1) gauge theory on

2d non-commutative space with periodic boundary conditions. In general the distribution

is asymmetric under ν 7→ −ν, reflecting the parity violation due to non-commutative

geometry. In the continuum and infinite-volume limits, however, the distribution turns out

to be dominated by the topologically trivial sector. This conclusion is consistent with the

instanton calculus in the continuum theory. However, it is in striking contrast to the known

results in the commutative case obtained from lattice simulation, where the distribution is

Gaussian in a finite volume, but the width diverges in the infinite-volume limit. We also

calculate the average action in each topological sector, and provide deeper understanding

of the observed phenomenon.
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1. Introduction

Non-commutative (NC) geometry [1, 2] has been studied for quite a long time as a simple

modification of our notion of space-time at short distances possibly due to effects of quan-

tum gravity [3]. It has attracted much attention since it was shown to appear naturally

from matrix models [4, 5] and string theories [6]. In particular, field theory on NC geometry

has a peculiar property known as the UV/IR mixing [7], which may cause a drastic change

of the long-distance physics through quantum effects. This phenomenon has been first dis-

covered in perturbation theory, but it was shown to appear also in a fully nonperturbative

setup [8]. A typical example is the spontaneous breaking of the translational symmetry in

NC scalar field theory, which was first conjectured from a self-consistent one-loop analy-

sis [9] and confirmed later on by Monte Carlo simulation [10 – 12]. (See also [13, 14].)

The appearance of a new type of IR divergence due to the UV/IR mixing spoils the

perturbative renormalizability in most cases [15], and therefore, even the existence of a

sensible field theory on a NC geometry is a priori debatable. In order to study such a

nonperturbative issue, one has to define a regularized field theory on NC geometry. This

can be done by using matrix models. In the case of NC torus, for instance, the so-called

twisted reduced model [16, 17] is interpreted as a lattice formulation of NC field theories [8],

in which finite N matrices are mapped one-to-one onto fields on a periodic lattice. The

existence of a sensible continuum limit and hence the nonperturbative renormalizability

have been shown by Monte Carlo simulations in NC U(1) gauge theory in 2d [18] and

4d [19] as well as in NC scalar field theory in 3d [12, 20].

In the case of fuzzy sphere [21], finite N matrices are mapped one-to-one onto functions

on the sphere with a specific cutoff on the angular momentum. The fuzzy sphere (or fuzzy

manifolds [22, 23] in general) preserves the continuous symmetry of the base manifold,

which makes it an interesting candidate for a novel regularization of commutative field

theories alternative to the lattice [24]. Stability of fuzzy manifolds in matrix models with

the Chern-Simons term [25, 26] has been studied by Monte Carlo simulations [27, 28].
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One of the interesting features of NC field theories is the appearance of a new type of

topological objects, which are referred to as NC solitons [29], NC monopoles, NC instantons,

and fluxons [30] in the literature. They are constructed by using a projection operator,

and the matrices describing such configurations are assumed to be infinite dimensional.

In finite NC geometries topological objects have been constructed by using the algebraic

K-theory and projective modules [31 – 33].

Dynamical aspects of these topological objects are of particular importance in the

realization of a chiral gauge theory in our four-dimensional world by compactifying a string

theory with a nontrivial index in the compactified dimensions. Ultimately we hope to

realize such a scenario dynamically, for instance, in the IIB matrix model [34], in which

the dynamical generation of four-dimensional space-time [35 – 37] as well as the gauge

group [38, 39] has been studied intensively. A crucial link in generating chiral fermions

from a matrix model is provided by the index theorem [40], which relates the topological

charge of an arbitrary gauge configuration to the index of the Dirac operator on that

background. The index theorem can be proved in noncommutative R
d in the same way as

in the commutative case [41].

Extension of the index theorem to finite NC geometry is a non-trivial issue due to the

doubling problem of the naive Dirac action. In lattice gauge theory, an analogous problem

was solved by the use of the so-called overlap Dirac operator [42 – 45], which satisfies the

Ginsparg-Wilson relation [46]. The ideas developed in lattice gauge theory have been

successfully extended to NC geometry. In the case of NC torus, the overlap Dirac operator

has been introduced in ref. [47], and it was used to define a NC chiral gauge theory with

manifest star-gauge invariance. For general NC manifolds, a prescription to define the

Ginsparg-Wilson Dirac operator and its index has been provided in ref. [48], and the fuzzy

sphere was considered as a concrete example.1 The Ginsparg-Wilson algebra for the fuzzy

sphere has been studied in detail in each topological sector [32]. In ref. [50] the overlap

Dirac operator on the NC torus [47] was derived also from this general prescription [48],

and the axial anomaly has been calculated in the continuum limit.

In an attempt to construct a topologically nontrivial configuration on the fuzzy sphere,

an analogue of the ’t Hooft-Polyakov monopole was obtained [32, 33]. Although the index

defined through the Ginsparg-Wilson Dirac operator vanishes for these configurations, one

can make it non-zero by inserting a projection operator, which picks up the unbroken U(1)

component of the SU(2) gauge group. In fact the ’t Hooft-Polyakov monopole configura-

tions are precisely the meta-stable states observed in Monte Carlo simulations [27] taking

the two coincident fuzzy spheres as the initial configuration, which eventually decays into

a single fuzzy sphere. In ref. [51] this instability was studied analytically by the one-loop

calculation of free energy around the ’t Hooft-Polyakov monopole configurations, and it

was interpreted as the dynamical generation of a nontrivial index, which may be used for

the realization of a chiral fermion in our space-time.

In our previous work [52], we have demonstrated the validity of the index theorem

in finite NC geometry, taking the 2d U(1) gauge theory on a discretized NC torus as a

1The Ginsparg-Wilson Dirac operator for vanishing gauge field was constructed earlier in refs. [49].
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simple example, which is studied extensively in the literature both numerically [18] and

analytically [53 – 55]. In particular, ref. [55] presents general classical solutions carrying the

topological charge. We computed the index defined through the Ginsparg-Wilson Dirac

operator for these classical solutions and compared the results with the topological charge.

The index theorem holds when the action is small, but the index takes only multiple integer

values of N , the size of the 2d lattice. For non-zero indices, the action is finite in the large

N limit, but it diverges when the bare coupling constant is tuned in the continuum limit.

By interpolating the classical solutions, we constructed explicit configurations for which

the index is of order 1, but the action becomes of order N . These results suggested that

the probability of obtaining a non-zero index vanishes in the continuum limit.

In this paper we confirm this statement at the quantum level by performing Monte

Carlo simulation of the 2d U(1) gauge theory on a NC discretized torus. Since the theory

is known to have a sensible continuum limit [18], we investigate the probability distribution

of the index in that limit. Comparison with the known results in the corresponding com-

mutative case obtained from lattice simulation [56] allows us to reveal the striking effects

of NC geometry.

The rest of this paper is organized as follows. In section 2 we define the model and the

index of the overlap Dirac operator. In section 3 we show our results for the probability dis-

tribution of the index. In section 4 we discuss the average action in each topological sector,

which provides qualitative understanding for the behavior of the probability distribution.

Section 5 is devoted to a summary and discussions.

2. The model and the topological sectors

In this section we define the model and the topological sectors based on the matrix model

formulation of NC gauge theory. For more details such as the interpretation of matrices as

fields on a NC torus, we refer the reader to our previous paper [52].

The model we study in this paper is given by the action

S = N2β
∑

µ6=ν

{

1 − 1

N
Zνµ tr

(

Vµ Vν V †
µ V †

ν

)

}

, (2.1)

where Zµν = Z∗
νµ is a phase factor given by [47]

Z12 = exp

(

πi
N + 1

N

)

(2.2)

with N being an odd integer. The NC tensor Θµν , which characterizes NC geometry

[xµ, xν ] = iΘµν , is given by

Θµν = ϑ ǫµν , ϑ =
1

π
Na2 . (2.3)

Since the NC parameter ϑ is related to the lattice spacing by (2.3), we have to take

the large N limit together with the continuum limit a → 0 in order to obtain a continuum

theory with finite ϑ. In that limit the physical extent of the torus ℓ = aN goes to infinity
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at the same time. Whether one can obtain a sensible continuum limit by tuning β appro-

priately is a non-trivial issue, which has been addressed in ref. [18]. It turned out that β

should be sent to ∞ as

β ∝ 1

a2
. (2.4)

Combining this with (2.3), one finds that the large N limit should be taken together with

β → ∞ limit so that β/N is fixed. This limit is called the “double scaling limit”, in which

non-planar diagrams survive. If one takes the planar limit (N → ∞ with fixed β) instead,

one obtains a gauge theory on a NC space with ϑ = ∞. In this limit the Wilson loops

agree 2 with the SU(∞) lattice gauge theory [57] due to the Eguchi-Kawai equivalence [16].

In particular the expectation value of the action in this limit is given by [57]

〈S〉 =

{

2βN2(1 − β) for β < 1
2
,

1

2
N2 for β ≥ 1

2
,

(2.5)

which shows that the system undergoes a third order phase transition at β = βcr ≡ 1/2.

The configuration space can be naturally decomposed into topological sectors by the

index of the overlap Dirac operator on the discretized NC torus [47, 48, 50]. Let us define

the covariant forward (backward) difference operator

∇µΨ =
1

a
[VµΨΓµ − Ψ] ,

∇∗
µΨ =

1

a

[

Ψ − V †
µ ΨΓµ

]

, (2.6)

where the SU(N) matrices Γµ (µ = 1, 2) satisfy the ’t Hooft-Weyl algebra

ΓµΓν = ZµνΓνΓµ . (2.7)

Given the covariant forward (backward) difference operator, we can define the overlap

Dirac operator in precisely the same way as in the commutative case.

First the Wilson-Dirac operator can be defined as

DW =
1

2

2
∑

µ=1

{

γµ

(

∇∗
µ + ∇µ

)

− a∇∗
µ∇µ

}

, (2.8)

where γµ (µ = 1, 2) are the gamma matrices in 2d. A crucial property of the overlap Dirac

operator D is the Ginsparg-Wilson relation [46]

γ5D + Dγ5 = aDγ5D , (2.9)

where γ5 = −iγ1γ2 is the chirality operator. Assuming the γ5-hermiticity D† = γ5Dγ5, we

can define a hermitean operator γ̂5 by

γ̂5 = γ5 (1 − aD) , (2.10)

2At finite ϑ, the agreement holds only when the physical area surrounded by the Wilson loop is much

smaller than ϑ. As a consequence, the relation (2.4) agrees with the one required for the continuum limit

of the SU(∞) lattice gauge theory [57].
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Figure 1: The probability distribution of ν

N
for various N at β = 0.

which may be solved for D as D = 1
a
(1−γ5γ̂5). Then the Ginsparg-Wilson relation (2.9) is

equivalent to requiring γ̂5 to be unitary. The overlap Dirac operator corresponds to taking

γ̂5 to be [42]

γ̂5 =
H√
H2

, (2.11)

H = γ5 (1 − aDW) , (2.12)

where DW is the Wilson-Dirac operator.

One can define the index of D unambiguously by ν ≡ n+−n−, where n± is the number

of zero modes with the chirality ±1. It turns out that [43 – 45]

ν =
1

2
T r(γ5 + γ̂5) =

1

2
T r

H√
H2

, (2.13)

where T r represents a trace over the space of matrices and over the spinor index.

We performed Monte Carlo simulation of the model (2.1) using the heat bath algo-

rithm as in ref. [18]. For each configuration Vµ generated by simulation, we calculate the

index (2.13). We diagonalize the hermitean matrix H defined by (2.12), and count the

number of positive and negative eigenvalues. (Note that the lattice spacing a which ap-

pears in the expressions (2.6), (2.8) and (2.12) cancel each other, and the index does not

depend explicitly on a.) The computational effort for calculating the index is of order N6,

since we have to diagonalize the 2N2 × 2N2 hermitean matrix H.

3. Probability distribution of the index

In this section we present our results for the probability distribution of the index ν — as

computed by the definition (2.13) — in the gauge theory on the NC torus.

In figure 1 we plot the probability distribution of ν for various N at β = 0. This

represents the distribution in the configuration space without taking account of the action.

To our surprise, it turns out that the distribution of ν is asymmetric under ν 7→ −ν.

This is in striking contrast to ordinary commutative theories, in which the distribution
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Figure 2: The probability distribution of ν is plotted for various β at N = 15 (left) and for various

N at β = 0.55 (right). In the right plot, the log scale is taken for the y-axis to magnify the results

at ν 6= 0.

of ν is symmetric due to parity invariance. We also find that the distribution for the

rescaled topological charge ν/N at different N lies on top of each other. This behavior is

analogous to what one obtains in the commutative continuum theory (See, for instance,

section 6 of ref. [52].). The plot also confirms the existence of ν 6= 0 configurations on the

discretized NC torus. An example of such configurations is found numerically in ref. [58],

and constructed analytically in section 5 of ref. [52]. The crucial question we address in

what follows is whether such configurations survive in the continuum limit.

Let us see how the probability distribution of ν changes as we switch on β. In figure 2

(left) we plot the probability distribution P (ν) for various β at N = 15. (Throughout this

paper, we assume the normalization
∑

ν P (ν) = 1.) We find that the probability for ν 6= 0

decreases rapidly, and the probability for ν = 0 approaches unity. In figure 2 (right) we plot

the probability distribution P (ν) for various N at β = 0.55. Note that the value of β we

have chosen is above the critical point β = βcr ≡ 1/2 of the Gross-Witten phase transition.

We find that the distribution approaches the Kronecker delta δν0 not only for increasing β

but also for increasing N . In figure 3 we plot the ratio P (ν)/P (0) for ν = 1,−1 for various

β at N = 15 (left) and for various N at β = 0.55 (right). In both cases we observe an

exponentially decreasing behavior.

As we mentioned in the previous section, in order to take the continuum limit, we

have to send N and β to ∞ simultaneously fixing the ratio β/N . It is clear from the above

results that the distribution P (ν) approaches δν0 very rapidly in that limit.

4. Average action in each topological sector

In this section we provide an explanation of our results in the previous section by studying

the action in each topological sector. In figure 4 we plot the distribution of the action S

for ν = 0,−1 at β = 0.1 and β = 0.5. We find that at β = 0.1 the distribution for different

topological sector lies on top of each other, while at β = 0.5 the distribution for ν = 0

– 6 –
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Figure 3: The ratio P (ν)/P (0) for ν = 1,−1 is plotted in the log scale as a function of β at

N = 15 (left) and as a function of N at β = 0.55 (right). The straight lines represent a fit to an

exponentially decreasing behavior.
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Figure 4: The distribution of the action in the ν = 0 and ν = −1 topological sectors is plotted for

β = 0.1 and β = 0.5 at N = 15.

differs much from ν = −1. We have also measured the distribution for ν = 1, 2,−2, which

turns out to be very close to the result for ν = −1.

In figure 5 we plot the average value of the action S̄(ν) in each topological sector. We

find that the result is almost flat except at ν = 0. Note that the weighted sum of S̄(ν)

yields
∑

ν

S̄(ν)P (ν) = 〈S〉 , (4.1)

where 〈S〉 is given by (2.5) in the planar limit. When the ν = 0 sector dominates, we have

S̄(0) ≃ 〈S〉. This explains the behavior of S̄(0) in figure 5.

In both plots in figure 5, we observe a dip at ν = 0. In figure 6 we plot the size of the

dip defined by

∆S ≡ S̄(−1) − S̄(0) , (4.2)

which shows that the dip grows linearly with both β and N . (From the left plot, we find

that the linear behavior sets in at β ∼ 0.5, which is close to the critical point of the Gross-
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Witten phase transition.) This is consistent with the exponentially decreasing behavior of

the probability P (ν)/P (0) for ν 6= 0 discussed in the previous section.

In the commutative case [56], lattice simulation shows that the average action in each

sector increases quadratically with ν, but the coefficient vanishes in the infinite-volume

limit. Correspondingly the distribution of ν is Gaussian in a finite volume, but the width

diverges in the infinite-volume limit. Thus the situation in the NC case differs drastically

from the commutative case.

5. Summary and discussions

In this paper we have studied the effects of NC geometry on the probability distribution

of the index ν of the Dirac operator. In the 2d U(1) gauge theory with periodic boundary

conditions, we found that the probability for ν 6= 0 is exponentially suppressed in the con-

tinuum and infinite-volume limits. Our conclusion is consistent with our previous analysis

at the classical level [52] and with the instanton calculus in the continuum theory [54]. In
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fact the topologically trivial sector includes all the instanton configurations that contribute

to the partition function.

In order to understand our conclusion intuitively, let us recall that in NC geometry, the

action involves the star product, which must have certain smoothening effects on the gauge

field. In the commutative case with periodic boundary conditions, a classical solution in

a topologically non-trivial sector has a constant field strength, but the vector potential

has a singularity. (See e.g., section 6 of ref. [52].) It is therefore conceivable that such

configurations cannot be realized in NC geometry. Our results in section 4 substantiate

this argument.

It follows from our conclusion that special care must be taken when one studies the θ-

vacuum in NC geometry.3 In general one has to sum over (topologically different) twisted

boundary conditions labeled by ν with the phase factor eiνθ. In the commutative case,

however, one may equivalently add a θ-term to the action and just integrate over the

lattice configuration with periodic boundary conditions, as is done e.g., in ref. [60]. Our

conclusion implies that this is no longer true in NC geometry. In ref. [52] we speculated

that NC geometry may provide a solution to the strong CP problem, but this remains to

be seen.

As another effect of NC geometry, we found that in general the probability distribu-

tion of ν becomes asymmetric under ν 7→ −ν, reflecting the parity violation due to NC

geometry. This is interesting since it suggests a possibility to obtain a non-zero vacuum

expectation value for the index ν in some NC model. Alternatively, one can twist the

boundary condition to make a topologically non-trivial sector dominate in the continuum

and infinite-volume limits [59]. We expect that these unusual properties of NC geometry

may provide a dynamical mechanism for realizing chiral fermions in string theory compact-

ifications, or a mechanism for generating non-zero baryon number density in the universe.

See refs. [51, 61] for a related line of research using fuzzy spheres in the extra dimensions.

From the motivations mentioned above, it would be interesting to extend the present

analysis to four dimensions. Unlike the 2d case studied in this paper, the perturbative

vacuum is actually unstable due to the UV/IR mixing [62 – 67]. However, the system

stabilizes after the condensation of the Wilson lines and finds a stable nonperturbative

vacuum [19], in which the translational invariance is spontaneously broken. One can also

stabilize the perturbative vacuum by keeping the UV cutoff finite and regarding the model

as a low-energy effective theory. The situation may depend on which vacuum one chooses.

We hope to address such issues in future publications.

Acknowledgments

It is our pleasure to thank Hidenori Fukaya, Satoshi Iso, Hikaru Kawai, Kenji Ogawa and

Kentaroh Yoshida for valuable discussions.

3Strictly speaking, we need to have the ordinary (commutative) time in order to be able to speak about a

“vacuum”. We may think of, for instance, four-dimensional space-time with non-commutativity introduced

only in two spatial directions [19]. Let us also remind the readers that the parameter θ should not be

confused with the non-commutativity parameter ϑ.

– 9 –



J
H
E
P
1
0
(
2
0
0
7
)
0
2
4

References

[1] H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38.

[2] A. Connes, Noncommutative geometry, Academic Press (1990).

[3] S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of space-time at the

Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187 [hep-th/0303037].

[4] A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory:

compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162].

[5] H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B 565 (2000)

176 [hep-th/9908141].

[6] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032

[hep-th/9908142].

[7] S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics,

JHEP 02 (2000) 020 [hep-th/9912072].

[8] J. Ambjørn, Y.M. Makeenko, J. Nishimura and R.J. Szabo, Finite N matrix models of

noncommutative gauge theory, JHEP 11 (1999) 029 [hep-th/9911041]; Nonperturbative

dynamics of noncommutative gauge theory, Phys. Lett. B 480 (2000) 399 [hep-th/0002158];

Lattice gauge fields and discrete noncommutative Yang-Mills theory, JHEP 05 (2000) 023

[hep-th/0004147].

[9] S.S. Gubser and S.L. Sondhi, Phase structure of non-commutative scalar field theories, Nucl.

Phys. B 605 (2001) 395 [hep-th/0006119].

[10] W. Bietenholz, F. Hofheinz and J. Nishimura, Simulating non-commutative field theory, Nucl.

Phys. 119 (Proc. Suppl.) (2003) 941 [hep-lat/0209021]; Non-commutative field theories

beyond perturbation theory, Fortschr. Phys. 51 (2003) 745 [hep-th/0212258]; Numerical

results on the non-commutative λφ4 model, Nucl. Phys. 129 (Proc. Suppl.) (2004) 865

[hep-th/0309182]; The non-commutative λφ4 model, Acta Phys. Polon. B34 (2003) 4711

[hep-th/0309216];

F. Hofheinz, Field theory on a non-commutative plane: a non-perturbative study, Fortschr.

Phys. 52 (2004) 391 [hep-th/0403117].

[11] J. Ambjørn and S. Catterall, Stripes from (noncommutative) stars, Phys. Lett. B 549 (2002)

253 [hep-lat/0209106];

X. Martin, A matrix phase for the φ4 scalar field on the fuzzy sphere, JHEP 04 (2004) 077

[hep-th/0402230].

[12] W. Bietenholz, F. Hofheinz and J. Nishimura, Phase diagram and dispersion relation of the

non-commutative λφ4 model in D = 3, JHEP 06 (2004) 042 [hep-th/0404020].

[13] G.-H. Chen and Y.-S. Wu, Renormalization group equations and the Lifshitz point in

noncommutative Landau-Ginsburg theory, Nucl. Phys. B 622 (2002) 189 [hep-th/0110134].

[14] P. Castorina and D. Zappala, Nonuniform symmetry breaking in noncommutative λφ4 theory,

Phys. Rev. D 68 (2003) 065008 [hep-th/0303030].

[15] I. Chepelev and R. Roiban, Renormalization of quantum field theories on noncommutative

Rd. I: Scalars, JHEP 05 (2000) 037 [hep-th/9911098].

– 10 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C71%2C38
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C172%2C187
http://arxiv.org/abs/hep-th/0303037
http://jhep.sissa.it/stdsearch?paper=02%281998%29003
http://arxiv.org/abs/hep-th/9711162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB565%2C176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB565%2C176
http://arxiv.org/abs/hep-th/9908141
http://jhep.sissa.it/stdsearch?paper=09%281999%29032
http://arxiv.org/abs/hep-th/9908142
http://jhep.sissa.it/stdsearch?paper=02%282000%29020
http://arxiv.org/abs/hep-th/9912072
http://jhep.sissa.it/stdsearch?paper=11%281999%29029
http://arxiv.org/abs/hep-th/9911041
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB480%2C399
http://arxiv.org/abs/hep-th/0002158
http://jhep.sissa.it/stdsearch?paper=05%282000%29023
http://arxiv.org/abs/hep-th/0004147
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB605%2C395
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB605%2C395
http://arxiv.org/abs/hep-th/0006119
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C119%2C941
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C119%2C941
http://arxiv.org/abs/hep-lat/0209021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C51%2C745
http://arxiv.org/abs/hep-th/0212258
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C129%2C865
http://arxiv.org/abs/hep-th/0309182
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APPOA%2CB34%2C4711
http://arxiv.org/abs/hep-th/0309216
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C52%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C52%2C391
http://arxiv.org/abs/hep-th/0403117
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB549%2C253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB549%2C253
http://arxiv.org/abs/hep-lat/0209106
http://jhep.sissa.it/stdsearch?paper=04%282004%29077
http://arxiv.org/abs/hep-th/0402230
http://jhep.sissa.it/stdsearch?paper=06%282004%29042
http://arxiv.org/abs/hep-th/0404020
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB622%2C189
http://arxiv.org/abs/hep-th/0110134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C065008
http://arxiv.org/abs/hep-th/0303030
http://jhep.sissa.it/stdsearch?paper=05%282000%29037
http://arxiv.org/abs/hep-th/9911098


J
H
E
P
1
0
(
2
0
0
7
)
0
2
4

[16] T. Eguchi and H. Kawai, Reduction of dynamical degrees of freedom in the large N gauge

theory, Phys. Rev. Lett. 48 (1982) 1063.

[17] A. Gonzalez-Arroyo and M. Okawa, A twisted model for large N lattice gauge theory, Phys.

Lett. B 120 (1983) 174; The twisted Eguchi-Kawai model: a reduced model for large N lattice

gauge theory, Phys. Rev. D 27 (1983) 2397.

[18] W. Bietenholz, F. Hofheinz and J. Nishimura, A non-perturbative study of gauge theory on a

non-commutative plane, JHEP 09 (2002) 009 [hep-th/0203151].

[19] W. Bietenholz, J. Nishimura, Y. Susaki and J. Volkholz, A non-perturbative study of 4D U(1)

non-commutative gauge theory: the fate of one-loop instability, JHEP 10 (2006) 042

[hep-th/0608072];

W. Bietenholz, F. Hofheinz, J. Nishimura, Y. Susaki and J. Volkholz, First simulation results

for the photon in a non-commutative space, Nucl. Phys. 140 (Proc. Suppl.) (2005) 772

[hep-lat/0409059];

W. Bietenholz et al., Numerical results for U(1) gauge theory on 2D and 4D

non-commutative spaces, Fortschr. Phys. 53 (2005) 418 [hep-th/0501147];

J. Volkholz, W. Bietenholz, J. Nishimura and Y. Susaki, The scaling of QED in a

non-commutative space-time, PoS(LAT2005)264 [hep-lat/0509146].

[20] W. Bietenholz, F. Hofheinz and J. Nishimura, On the relation between non-commutative field

theories at θ = ∞ and large N matrix field theories, JHEP 05 (2004) 047 [hep-th/0404179].

[21] J. Madore, The fuzzy sphere, Class. and Quant. Grav. 9 (1992) 69.

[22] B.P. Dolan and D. O’Connor, A fuzzy three sphere and fuzzy tori, JHEP 10 (2003) 060

[hep-th/0306231].

[23] D. O’Connor, Field theory on low dimensional fuzzy spaces, Mod. Phys. Lett. A 18 (2003)

2423.
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