Probability distribution of the index in gauge theory on 2d non-commutative geometry

Hajime Aoki, ${ }^{a}$ Jun Nishimura ${ }^{b c}$ and Yoshiaki Susaki ${ }^{b d}$
${ }^{a}$ Department of Physics, Saga University, Saga 840-8502, Japan
${ }^{b}$ High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
${ }^{c}$ Department of Particle and Nuclear Physics, Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki 305-0801, Japan
${ }^{d}$ Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
E-mail: haoki@cc.saga-u.ac.jp, jnishi@post.kek.jp, susaki@post.kek.jp

Abstract

We investigate the effects of non-commutative geometry on the topological aspects of gauge theory using a non-perturbative formulation based on the twisted reduced model. The configuration space is decomposed into topological sectors labeled by the index ν of the overlap Dirac operator satisfying the Ginsparg-Wilson relation. We study the probability distribution of ν by Monte Carlo simulation of the $\mathrm{U}(1)$ gauge theory on 2 d non-commutative space with periodic boundary conditions. In general the distribution is asymmetric under $\nu \mapsto-\nu$, reflecting the parity violation due to non-commutative geometry. In the continuum and infinite-volume limits, however, the distribution turns out to be dominated by the topologically trivial sector. This conclusion is consistent with the instanton calculus in the continuum theory. However, it is in striking contrast to the known results in the commutative case obtained from lattice simulation, where the distribution is Gaussian in a finite volume, but the width diverges in the infinite-volume limit. We also calculate the average action in each topological sector, and provide deeper understanding of the observed phenomenon.

Keywords: Nonperturbative Effects, Solitons Monopoles and Instantons, Non-Commutative Geometry.

Contents

1. Introduction 1
2. The model and the topological sectors 3
3. Probability distribution of the index 5
4. Average action in each topological sector 6
5. Summary and discussions 8

1. Introduction

Non-commutative (NC) geometry [1, 2] has been studied for quite a long time as a simple modification of our notion of space-time at short distances possibly due to effects of quantum gravity [3]. It has attracted much attention since it was shown to appear naturally from matrix models [1] , 司] and string theories [6]. In particular, field theory on NC geometry has a peculiar property known as the UV/IR mixing [7] which may cause a drastic change of the long-distance physics through quantum effects. This phenomenon has been first discovered in perturbation theory, but it was shown to appear also in a fully nonperturbative setup [8]. A typical example is the spontaneous breaking of the translational symmetry in NC scalar field theory, which was first conjectured from a self-consistent one-loop analysis [8] and confirmed later on by Monte Carlo simulation [10-12]. (See also [13, 14].)

The appearance of a new type of IR divergence due to the UV/IR mixing spoils the perturbative renormalizability in most cases [15], and therefore, even the existence of a sensible field theory on a NC geometry is a priori debatable. In order to study such a nonperturbative issue, one has to define a regularized field theory on NC geometry. This can be done by using matrix models. In the case of NC torus, for instance, the so-called twisted reduced model [16, (17] is interpreted as a lattice formulation of NC field theories [8], in which finite N matrices are mapped one-to-one onto fields on a periodic lattice. The existence of a sensible continuum limit and hence the nonperturbative renormalizability have been shown by Monte Carlo simulations in $\mathrm{NC} \mathrm{U}(1)$ gauge theory in 2d 18] and 4 d [19] as well as in NC scalar field theory in 3 d (12, 20.

In the case of fuzzy sphere [21], finite N matrices are mapped one-to-one onto functions on the sphere with a specific cutoff on the angular momentum. The fuzzy sphere (or fuzzy manifolds [22, 23] in general) preserves the continuous symmetry of the base manifold, which makes it an interesting candidate for a novel regularization of commutative field theories alternative to the lattice [24]. Stability of fuzzy manifolds in matrix models with the Chern-Simons term [25, 26] has been studied by Monte Carlo simulations [27, 28].

One of the interesting features of NC field theories is the appearance of a new type of topological objects, which are referred to as NC solitons [29], NC monopoles, NC instantons, and fluxons [30] in the literature. They are constructed by using a projection operator, and the matrices describing such configurations are assumed to be infinite dimensional. In finite NC geometries topological objects have been constructed by using the algebraic K-theory and projective modules [31- [33].

Dynamical aspects of these topological objects are of particular importance in the realization of a chiral gauge theory in our four-dimensional world by compactifying a string theory with a nontrivial index in the compactified dimensions. Ultimately we hope to realize such a scenario dynamically, for instance, in the IIB matrix model [34, in which the dynamical generation of four-dimensional space-time [35-37] as well as the gauge group [38, [39] has been studied intensively. A crucial link in generating chiral fermions from a matrix model is provided by the index theorem [40], which relates the topological charge of an arbitrary gauge configuration to the index of the Dirac operator on that background. The index theorem can be proved in noncommutative \mathbb{R}^{d} in the same way as in the commutative case (41].

Extension of the index theorem to finite NC geometry is a non-trivial issue due to the doubling problem of the naive Dirac action. In lattice gauge theory, an analogous problem was solved by the use of the so-called overlap Dirac operator [42-45], which satisfies the Ginsparg-Wilson relation [46]. The ideas developed in lattice gauge theory have been successfully extended to NC geometry. In the case of NC torus, the overlap Dirac operator has been introduced in ref. [47], and it was used to define a NC chiral gauge theory with manifest star-gauge invariance. For general NC manifolds, a prescription to define the Ginsparg-Wilson Dirac operator and its index has been provided in ref. 48], and the fuzzy sphere was considered as a concrete example. ${ }^{1}$ The Ginsparg-Wilson algebra for the fuzzy sphere has been studied in detail in each topological sector [32]. In ref. [50] the overlap Dirac operator on the NC torus [47] was derived also from this general prescription [48], and the axial anomaly has been calculated in the continuum limit.

In an attempt to construct a topologically nontrivial configuration on the fuzzy sphere, an analogue of the 't Hooft-Polyakov monopole was obtained [32, 33]. Although the index defined through the Ginsparg-Wilson Dirac operator vanishes for these configurations, one can make it non-zero by inserting a projection operator, which picks up the unbroken $\mathrm{U}(1)$ component of the $\mathrm{SU}(2)$ gauge group. In fact the 't Hooft-Polyakov monopole configurations are precisely the meta-stable states observed in Monte Carlo simulations [27] taking the two coincident fuzzy spheres as the initial configuration, which eventually decays into a single fuzzy sphere. In ref. [51] this instability was studied analytically by the one-loop calculation of free energy around the 't Hooft-Polyakov monopole configurations, and it was interpreted as the dynamical generation of a nontrivial index, which may be used for the realization of a chiral fermion in our space-time.

In our previous work [52], we have demonstrated the validity of the index theorem in finite NC geometry, taking the $2 \mathrm{~d} \mathrm{U}(1)$ gauge theory on a discretized NC torus as a

[^0]simple example, which is studied extensively in the literature both numerically 18 and analytically 53-55]. In particular, ref. 55] presents general classical solutions carrying the topological charge. We computed the index defined through the Ginsparg-Wilson Dirac operator for these classical solutions and compared the results with the topological charge. The index theorem holds when the action is small, but the index takes only multiple integer values of N, the size of the 2 d lattice. For non-zero indices, the action is finite in the large N limit, but it diverges when the bare coupling constant is tuned in the continuum limit. By interpolating the classical solutions, we constructed explicit configurations for which the index is of order 1 , but the action becomes of order N. These results suggested that the probability of obtaining a non-zero index vanishes in the continuum limit.

In this paper we confirm this statement at the quantum level by performing Monte Carlo simulation of the $2 \mathrm{~d} \mathrm{U}(1)$ gauge theory on a NC discretized torus. Since the theory is known to have a sensible continuum limit 18, we investigate the probability distribution of the index in that limit. Comparison with the known results in the corresponding commutative case obtained from lattice simulation [56] allows us to reveal the striking effects of NC geometry.

The rest of this paper is organized as follows. In section 2 we define the model and the index of the overlap Dirac operator. In section 3 we show our results for the probability distribution of the index. In section 4 we discuss the average action in each topological sector, which provides qualitative understanding for the behavior of the probability distribution. Section 5 is devoted to a summary and discussions.

2. The model and the topological sectors

In this section we define the model and the topological sectors based on the matrix model formulation of NC gauge theory. For more details such as the interpretation of matrices as fields on a NC torus, we refer the reader to our previous paper [52].

The model we study in this paper is given by the action

$$
\begin{equation*}
S=N^{2} \beta \sum_{\mu \neq \nu}\left\{1-\frac{1}{N} \mathcal{Z}_{\nu \mu} \operatorname{tr}\left(V_{\mu} V_{\nu} V_{\mu}^{\dagger} V_{\nu}^{\dagger}\right)\right\} \tag{2.1}
\end{equation*}
$$

where $\mathcal{Z}_{\mu \nu}=\mathcal{Z}_{\nu \mu}^{*}$ is a phase factor given by 47

$$
\begin{equation*}
\mathcal{Z}_{12}=\exp \left(\pi i \frac{N+1}{N}\right) \tag{2.2}
\end{equation*}
$$

with N being an odd integer. The NC tensor $\Theta_{\mu \nu}$, which characterizes NC geometry $\left[x_{\mu}, x_{\nu}\right]=i \Theta_{\mu \nu}$, is given by

$$
\begin{equation*}
\Theta_{\mu \nu}=\vartheta \epsilon_{\mu \nu}, \quad \vartheta=\frac{1}{\pi} N a^{2} \tag{2.3}
\end{equation*}
$$

Since the NC parameter ϑ is related to the lattice spacing by (2.3), we have to take the large N limit together with the continuum limit $a \rightarrow 0$ in order to obtain a continuum theory with finite ϑ. In that limit the physical extent of the torus $\ell=a N$ goes to infinity
at the same time. Whether one can obtain a sensible continuum limit by tuning β appropriately is a non-trivial issue, which has been addressed in ref. 18]. It turned out that β should be sent to ∞ as

$$
\begin{equation*}
\beta \propto \frac{1}{a^{2}} \tag{2.4}
\end{equation*}
$$

Combining this with (2.3), one finds that the large N limit should be taken together with $\beta \rightarrow \infty$ limit so that β / N is fixed. This limit is called the "double scaling limit", in which non-planar diagrams survive. If one takes the planar limit $(N \rightarrow \infty$ with fixed β) instead, one obtains a gauge theory on a NC space with $\vartheta=\infty$. In this limit the Wilson loops agree ${ }^{2}$ with the $\mathrm{SU}(\infty)$ lattice gauge theory [57] due to the Eguchi-Kawai equivalence (16]. In particular the expectation value of the action in this limit is given by 57

$$
\langle S\rangle=\left\{\begin{array}{cl}
2 \beta N^{2}(1-\beta) & \text { for } \beta<\frac{1}{2} \tag{2.5}\\
\frac{1}{2} N^{2} & \text { for } \beta \geq \frac{1}{2}
\end{array}\right.
$$

which shows that the system undergoes a third order phase transition at $\beta=\beta_{\text {cr }} \equiv 1 / 2$.
The configuration space can be naturally decomposed into topological sectors by the index of the overlap Dirac operator on the discretized NC torus 47, 48, 50. Let us define the covariant forward (backward) difference operator

$$
\begin{align*}
\nabla_{\mu} \Psi & =\frac{1}{a}\left[V_{\mu} \Psi \Gamma_{\mu}-\Psi\right], \\
\nabla_{\mu}^{*} \Psi & =\frac{1}{a}\left[\Psi-V_{\mu}^{\dagger} \Psi \Gamma_{\mu}\right], \tag{2.6}
\end{align*}
$$

where the $\mathrm{SU}(N)$ matrices $\Gamma_{\mu}(\mu=1,2)$ satisfy the 't Hooft-Weyl algebra

$$
\begin{equation*}
\Gamma_{\mu} \Gamma_{\nu}=\mathcal{Z}_{\mu \nu} \Gamma_{\nu} \Gamma_{\mu} \tag{2.7}
\end{equation*}
$$

Given the covariant forward (backward) difference operator, we can define the overlap Dirac operator in precisely the same way as in the commutative case.

First the Wilson-Dirac operator can be defined as

$$
\begin{equation*}
D_{\mathrm{W}}=\frac{1}{2} \sum_{\mu=1}^{2}\left\{\gamma_{\mu}\left(\nabla_{\mu}^{*}+\nabla_{\mu}\right)-a \nabla_{\mu}^{*} \nabla_{\mu}\right\} \tag{2.8}
\end{equation*}
$$

where $\gamma_{\mu}(\mu=1,2)$ are the gamma matrices in 2 d . A crucial property of the overlap Dirac operator D is the Ginsparg-Wilson relation [46]

$$
\begin{equation*}
\gamma_{5} D+D \gamma_{5}=a D \gamma_{5} D \tag{2.9}
\end{equation*}
$$

where $\gamma_{5}=-i \gamma_{1} \gamma_{2}$ is the chirality operator. Assuming the γ_{5}-hermiticity $D^{\dagger}=\gamma_{5} D \gamma_{5}$, we can define a hermitean operator $\hat{\gamma}_{5}$ by

$$
\begin{equation*}
\hat{\gamma}_{5}=\gamma_{5}(1-a D) \tag{2.10}
\end{equation*}
$$

[^1]

Figure 1: The probability distribution of $\frac{\nu}{N}$ for various N at $\beta=0$.
which may be solved for D as $D=\frac{1}{a}\left(1-\gamma_{5} \hat{\gamma}_{5}\right)$. Then the Ginsparg-Wilson relation (2.9) is equivalent to requiring $\hat{\gamma}_{5}$ to be unitary. The overlap Dirac operator corresponds to taking $\hat{\gamma}_{5}$ to be 42]

$$
\begin{align*}
& \hat{\gamma}_{5}=\frac{H}{\sqrt{H^{2}}} \tag{2.11}\\
& H=\gamma_{5}\left(1-a D_{\mathrm{W}}\right), \tag{2.12}
\end{align*}
$$

where D_{W} is the Wilson-Dirac operator.
One can define the index of D unambiguously by $\nu \equiv n_{+}-n_{-}$, where $n_{ \pm}$is the number of zero modes with the chirality ± 1. It turns out that 43-45]

$$
\begin{equation*}
\nu=\frac{1}{2} \mathcal{T} r\left(\gamma_{5}+\hat{\gamma}_{5}\right)=\frac{1}{2} \mathcal{T} r \frac{H}{\sqrt{H^{2}}} \tag{2.13}
\end{equation*}
$$

where $\mathcal{T} r$ represents a trace over the space of matrices and over the spinor index.
We performed Monte Carlo simulation of the model (2.1) using the heat bath algorithm as in ref. [18]. For each configuration V_{μ} generated by simulation, we calculate the index (2.13). We diagonalize the hermitean matrix H defined by (2.12), and count the number of positive and negative eigenvalues. (Note that the lattice spacing a which appears in the expressions (2.6), (2.8) and (2.12) cancel each other, and the index does not depend explicitly on a.) The computational effort for calculating the index is of order N^{6}, since we have to diagonalize the $2 N^{2} \times 2 N^{2}$ hermitean matrix H.

3. Probability distribution of the index

In this section we present our results for the probability distribution of the index ν - as computed by the definition (2.13) - in the gauge theory on the NC torus.

In figure 1 we plot the probability distribution of ν for various N at $\beta=0$. This represents the distribution in the configuration space without taking account of the action. To our surprise, it turns out that the distribution of ν is asymmetric under $\nu \mapsto-\nu$. This is in striking contrast to ordinary commutative theories, in which the distribution

Figure 2: The probability distribution of ν is plotted for various β at $N=15$ (left) and for various N at $\beta=0.55$ (right). In the right plot, the \log scale is taken for the y -axis to magnify the results at $\nu \neq 0$.
of ν is symmetric due to parity invariance. We also find that the distribution for the rescaled topological charge ν / N at different N lies on top of each other. This behavior is analogous to what one obtains in the commutative continuum theory (See, for instance, section 6 of ref. [22].). The plot also confirms the existence of $\nu \neq 0$ configurations on the discretized NC torus. An example of such configurations is found numerically in ref. [58], and constructed analytically in section 5 of ref. [52]. The crucial question we address in what follows is whether such configurations survive in the continuum limit.

Let us see how the probability distribution of ν changes as we switch on β. In figure 2 (left) we plot the probability distribution $P(\nu)$ for various β at $N=15$. (Throughout this paper, we assume the normalization $\sum_{\nu} P(\nu)=1$.) We find that the probability for $\nu \neq 0$ decreases rapidly, and the probability for $\nu=0$ approaches unity. In figure 2 (right) we plot the probability distribution $P(\nu)$ for various N at $\beta=0.55$. Note that the value of β we have chosen is above the critical point $\beta=\beta_{\text {cr }} \equiv 1 / 2$ of the Gross-Witten phase transition. We find that the distribution approaches the Kronecker delta $\delta_{\nu 0}$ not only for increasing β but also for increasing N. In figure 3 we plot the ratio $P(\nu) / P(0)$ for $\nu=1,-1$ for various β at $N=15$ (left) and for various N at $\beta=0.55$ (right). In both cases we observe an exponentially decreasing behavior.

As we mentioned in the previous section, in order to take the continuum limit, we have to send N and β to ∞ simultaneously fixing the ratio β / N. It is clear from the above results that the distribution $P(\nu)$ approaches $\delta_{\nu 0}$ very rapidly in that limit.

4. Average action in each topological sector

In this section we provide an explanation of our results in the previous section by studying the action in each topological sector. In figure π^{6} we plot the distribution of the action S for $\nu=0,-1$ at $\beta=0.1$ and $\beta=0.5$. We find that at $\beta=0.1$ the distribution for different topological sector lies on top of each other, while at $\beta=0.5$ the distribution for $\nu=0$

Figure 3: The ratio $P(\nu) / P(0)$ for $\nu=1,-1$ is plotted in the \log scale as a function of β at $N=15$ (left) and as a function of N at $\beta=0.55$ (right). The straight lines represent a fit to an exponentially decreasing behavior.

Figure 4: The distribution of the action in the $\nu=0$ and $\nu=-1$ topological sectors is plotted for $\beta=0.1$ and $\beta=0.5$ at $N=15$.
differs much from $\nu=-1$. We have also measured the distribution for $\nu=1,2,-2$, which turns out to be very close to the result for $\nu=-1$.

In figure 5 we plot the average value of the action $\bar{S}(\nu)$ in each topological sector. We find that the result is almost flat except at $\nu=0$. Note that the weighted sum of $\bar{S}(\nu)$ yields

$$
\begin{equation*}
\sum_{\nu} \bar{S}(\nu) P(\nu)=\langle S\rangle \tag{4.1}
\end{equation*}
$$

where $\langle S\rangle$ is given by (2.5) in the planar limit. When the $\nu=0$ sector dominates, we have $\bar{S}(0) \simeq\langle S\rangle$. This explains the behavior of $\bar{S}(0)$ in figure 5 .

In both plots in figure 5, we observe a dip at $\nu=0$. In figure 6 we plot the size of the dip defined by

$$
\begin{equation*}
\Delta S \equiv \bar{S}(-1)-\bar{S}(0) \tag{4.2}
\end{equation*}
$$

which shows that the dip grows linearly with both β and N. (From the left plot, we find that the linear behavior sets in at $\beta \sim 0.5$, which is close to the critical point of the Gross-

Figure 5: The average value of the action is plotted against the index ν for various β at $N=15$ (left) and for various N at $\beta=0.55$ (right).

Figure 6: The dip ΔS is plotted as a function of β for $N=15$ (left) and as a function of N for various β (right).

Witten phase transition.) This is consistent with the exponentially decreasing behavior of the probability $P(\nu) / P(0)$ for $\nu \neq 0$ discussed in the previous section.

In the commutative case [56], lattice simulation shows that the average action in each sector increases quadratically with ν, but the coefficient vanishes in the infinite-volume limit. Correspondingly the distribution of ν is Gaussian in a finite volume, but the width diverges in the infinite-volume limit. Thus the situation in the NC case differs drastically from the commutative case.

5. Summary and discussions

In this paper we have studied the effects of NC geometry on the probability distribution of the index ν of the Dirac operator. In the $2 \mathrm{~d} \mathrm{U}(1)$ gauge theory with periodic boundary conditions, we found that the probability for $\nu \neq 0$ is exponentially suppressed in the continuum and infinite-volume limits. Our conclusion is consistent with our previous analysis at the classical level [52] and with the instanton calculus in the continuum theory [54]. In
fact the topologically trivial sector includes all the instanton configurations that contribute to the partition function.

In order to understand our conclusion intuitively, let us recall that in NC geometry, the action involves the star product, which must have certain smoothening effects on the gauge field. In the commutative case with periodic boundary conditions, a classical solution in a topologically non-trivial sector has a constant field strength, but the vector potential has a singularity. (See e.g., section 6 of ref. [52].) It is therefore conceivable that such configurations cannot be realized in NC geometry. Our results in section 6^{6} substantiate this argument.

It follows from our conclusion that special care must be taken when one studies the θ vacuum in NC geometry. ${ }^{3}$ In general one has to sum over (topologically different) twisted boundary conditions labeled by ν with the phase factor $\mathrm{e}^{i \nu \theta}$. In the commutative case, however, one may equivalently add a θ-term to the action and just integrate over the lattice configuration with periodic boundary conditions, as is done e.g., in ref. [60]. Our conclusion implies that this is no longer true in NC geometry. In ref. 52] we speculated that NC geometry may provide a solution to the strong CP problem, but this remains to be seen.

As another effect of NC geometry, we found that in general the probability distribution of ν becomes asymmetric under $\nu \mapsto-\nu$, reflecting the parity violation due to NC geometry. This is interesting since it suggests a possibility to obtain a non-zero vacuum expectation value for the index ν in some NC model. Alternatively, one can twist the boundary condition to make a topologically non-trivial sector dominate in the continuum and infinite-volume limits [59]. We expect that these unusual properties of NC geometry may provide a dynamical mechanism for realizing chiral fermions in string theory compactifications, or a mechanism for generating non-zero baryon number density in the universe. See refs. [51, 61] for a related line of research using fuzzy spheres in the extra dimensions.

From the motivations mentioned above, it would be interesting to extend the present analysis to four dimensions. Unlike the 2 d case studied in this paper, the perturbative vacuum is actually unstable due to the UV/IR mixing 662-67]. However, the system stabilizes after the condensation of the Wilson lines and finds a stable nonperturbative vacuum 199, in which the translational invariance is spontaneously broken. One can also stabilize the perturbative vacuum by keeping the UV cutoff finite and regarding the model as a low-energy effective theory. The situation may depend on which vacuum one chooses. We hope to address such issues in future publications.

Acknowledgments

It is our pleasure to thank Hidenori Fukaya, Satoshi Iso, Hikaru Kawai, Kenji Ogawa and Kentaroh Yoshida for valuable discussions.

[^2]
References

[1] H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38.
[2] A. Connes, Noncommutative geometry, Academic Press (1990).
[3] S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187 hep-th/0303037.
[4] A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: compactification on tori, JHEP 02 (1998) 003 hep-th/9711162.
[5] H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B 565 (2000) 176 hep-th/9908141.
[6] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 hep-th/9908142.
[7] S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 hep-th/9912072.
[8] J. Ambjørn, Y.M. Makeenko, J. Nishimura and R.J. Szabo, Finite N matrix models of noncommutative gauge theory, JHEP 11 (1999) 029 hep-th/9911041; Nonperturbative dynamics of noncommutative gauge theory, Phys. Lett. B 480 (2000) 399 [hep-th/0002158]; Lattice gauge fields and discrete noncommutative Yang-Mills theory, JHEP 05 (2000) 023 hep-th/0004147.
[9] S.S. Gubser and S.L. Sondhi, Phase structure of non-commutative scalar field theories, Nucl. Phys. B 605 (2001) 395 hep-th/0006119.
[10] W. Bietenholz, F. Hofheinz and J. Nishimura, Simulating non-commutative field theory, Nucl. Phys. 119 (Proc. Suppl.) (2003) 941 hep-lat/0209021; Non-commutative field theories beyond perturbation theory, Fortschr. Phys. 51 (2003) 745 hep-th/0212258; Numerical results on the non-commutative $\lambda \phi^{4}$ model, Nucl. Phys. 129 (Proc. Suppl.) (2004) 865 hep-th/0309182; The non-commutative $\lambda \phi^{4}$ model, Acta Phys. Polon. B34 (2003) 4711 hep-th/0309216;
F. Hofheinz, Field theory on a non-commutative plane: a non-perturbative study, Fortschr. Phys. 52 (2004) 391 hep-th/0403117.
[11] J. Ambjørn and S. Catterall, Stripes from (noncommutative) stars, Phys. Lett. B 549 (2002) 253 hep-lat/0209106;
X. Martin, A matrix phase for the ϕ^{4} scalar field on the fuzzy sphere, JHEP 04 (2004) 077 hep-th/0402230.
[12] W. Bietenholz, F. Hofheinz and J. Nishimura, Phase diagram and dispersion relation of the non-commutative $\lambda \phi^{4}$ model in $D=3$, JHEP 06 (2004) 042 hep-th/0404020.
[13] G.-H. Chen and Y.-S. Wu, Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory, Nucl. Phys. B 622 (2002) 189 hep-th/0110134.
[14] P. Castorina and D. Zappala, Nonuniform symmetry breaking in noncommutative $\lambda \phi^{4}$ theory, Phys. Rev. D 68 (2003) 065008 hep-th/0303030.
[15] I. Chepelev and R. Roiban, Renormalization of quantum field theories on noncommutative R^{d}. I: Scalars, JHEP 05 (2000) 037 hep-th/9911098.
[16] T. Eguchi and H. Kawai, Reduction of dynamical degrees of freedom in the large N gauge theory, Phys. Rev. Lett. 48 (1982) 1063.
[17] A. Gonzalez-Arroyo and M. Okawa, A twisted model for large N lattice gauge theory, Phys. Lett. B 120 (1983) 174; The twisted Eguchi-Kawai model: a reduced model for large N lattice gauge theory, Phys. Rev. D 27 (1983) 2397.
[18] W. Bietenholz, F. Hofheinz and J. Nishimura, A non-perturbative study of gauge theory on a non-commutative plane, JHEP 09 (2002) 009 hep-th/0203151.
[19] W. Bietenholz, J. Nishimura, Y. Susaki and J. Volkholz, A non-perturbative study of $4 D \mathrm{U}(1)$ non-commutative gauge theory: the fate of one-loop instability, JHEP 10 (2006) 042 hep-th/0608072;
W. Bietenholz, F. Hofheinz, J. Nishimura, Y. Susaki and J. Volkholz, First simulation results for the photon in a non-commutative space, Nucl. Phys. 140 (Proc. Suppl.) (2005) 772 hep-lat/0409059;
W. Bietenholz et al., Numerical results for U(1) gauge theory on $2 D$ and $4 D$ non-commutative spaces, Fortschr. Phys. 53 (2005) 418 hep-th/0501147;
J. Volkholz, W. Bietenholz, J. Nishimura and Y. Susaki, The scaling of QED in a non-commutative space-time, PoS(LAT2005)264 hep-lat/0509146.
[20] W. Bietenholz, F. Hofheinz and J. Nishimura, On the relation between non-commutative field theories at $\theta=\infty$ and large N matrix field theories, JHEP 05 (2004) 047 [hep-th/0404179].
[21] J. Madore, The fuzzy sphere, Class. and Quant. Grav. 9 (1992) 69.
[22] B.P. Dolan and D. O’Connor, A fuzzy three sphere and fuzzy tori, JHEP 10 (2003) 060 hep-th/0306231.
[23] D. O'Connor, Field theory on low dimensional fuzzy spaces, Mod. Phys. Lett. A 18 (2003) 2423.
[24] H. Grosse, C. Klimčík and P. Prešnajder, Towards finite quantum field theory in noncommutative geometry, Int. J. Theor. Phys. 35 (1996) 231 hep-th/9505175.
[25] R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 hep-th/9910053).
[26] S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki, Noncommutative gauge theory on fuzzy sphere from matrix model, Nucl. Phys. B 604 (2001) 121 hep-th/0101102.
[27] T. Azuma, S. Bal, K. Nagao and J. Nishimura, Nonperturbative studies of fuzzy spheres in a matrix model with the Chern-Simons term, JHEP 05 (2004) 005 hep-th/0401038.
[28] T. Azuma, S. Bal, K. Nagao and J. Nishimura, Absence of a fuzzy S^{4} phase in the dimensionally reduced 5D Yang-Mills-Chern-Simons model, JHEP 07 (2004) 066 hep-th/0405096]; Perturbative versus nonperturbative dynamics of the fuzzy $S^{2} \times S^{2}$, JHEP 09 (2005) 047 hep-th/0506205; Dynamical aspects of the fuzzy $C P^{2}$ in the large N reduced model with a cubic term, JHEP 05 (2006) 061 hep-th/0405277;
K.N. Anagnostopoulos, T. Azuma, K. Nagao and J. Nishimura, Impact of supersymmetry on the nonperturbative dynamics of fuzzy spheres, JHEP 09 (2005) 046 hep-th/0506062;
T. Azuma, K. Nagao and J. Nishimura, Perturbative dynamics of fuzzy spheres at large N, JHEP 06 (2005) 081 hep-th/0410263.
[29] R. Gopakumar, S. Minwalla and A. Strominger, Noncommutative solitons, JHEP 05 (2000) 020 hep-th/0003160;
J.A. Harvey, P. Kraus and F. Larsen, Exact noncommutative solitons, JHEP 12 (2000) 024 hep-th/0010060.
[30] N. Nekrasov and A.S. Schwarz, Instantons on noncommutative R^{4} and $(2,0)$ superconformal six dimensional theory, Commun. Math. Phys. 198 (1998) 689 hep-th/9802068;
A.P. Polychronakos, Flux tube solutions in noncommutative gauge theories, Phys. Lett. B 495 (2000) 407 hep-th/0007043;
D.J. Gross and N.A. Nekrasov, Dynamics of strings in noncommutative gauge theory, JHEP 10 (2000) 021 hep-th/0007204;
M. Aganagic, R. Gopakumar, S. Minwalla and A. Strominger, Unstable solitons in noncommutative gauge theory, JHEP 04 (2001) 001 hep-th/0009142;
D. Bak, Exact multi-vortex solutions in noncommutative abelian-Higgs theory, Phys. Lett. B 495 (2000) 251 hep-th/0008204;
D.J. Gross and N.A. Nekrasov, Monopoles and strings in noncommutative gauge theory, JHEP 07 (2000) 034 hep-th/0005204.
[31] H. Grosse, C. Klimčík and P. Prešnajder, Topologically nontrivial field configurations in noncommutative geometry, Commun. Math. Phys. 178 (1996) 507 hep-th/9510083;
S. Baez, A.P. Balachandran, B. Ydri and S. Vaidya, Monopoles and solitons in fuzzy physics, Commun. Math. Phys. 208 (2000) 787 hep-th/9811169;
G. Landi, Projective modules of finite type and monopoles over S^{2}, J. Geom. Phys. 37 (2001) 47 math-ph/9905014;
A.P. Balachandran and S. Vaidya, Instantons and chiral anomaly in fuzzy physics, Int. J. Mod. Phys. A 16 (2001) 17 hep-th/9910129;
P. Valtancoli, Projectors for the fuzzy sphere, Mod. Phys. Lett. A 16 (2001) 639 hep-th/0101189;
H. Steinacker, Quantized gauge theory on the fuzzy sphere as random matrix model, Nucl. Phys. B 679 (2004) 66 hep-th/0307075;
D. Karabali, V.P. Nair and A.P. Polychronakos, Spectrum of Schrödinger field in a noncommutative magnetic monopole, Nucl. Phys. B 627 (2002) 565 hep-th/0111249;
U. Carow-Watamura, H. Steinacker and S. Watamura, Monopole bundles over fuzzy complex projective spaces, J. Geom. Phys. 54 (2005) 373 hep-th/0404130.
[32] A.P. Balachandran and G. Immirzi, The fuzzy Ginsparg-Wilson algebra: a solution of the fermion doubling problem, Phys. Rev. D 68 (2003) 065023 hep-th/0301242.
[33] H. Aoki, S. Iso and K. Nagao, Ginsparg-Wilson relation and 't Hooft-Polyakov monopole on fuzzy 2-sphere, Nucl. Phys. B 684 (2004) 162 hep-th/0312199.
[34] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 hep-th/9612115.
[35] H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Space-time structures from IIB matrix model, Prog. Theor. Phys. 99 (1998) 713 hep-th/9802085.
[36] T. Hotta, J. Nishimura and A. Tsuchiya, Dynamical aspects of large N reduced models, Nucl. Phys. B 545 (1999) 543 hep-th/9811220;
J. Ambjørn, K.N. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, Large N dynamics of dimensionally reduced $4 D \mathrm{SU}(N)$ super Yang-Mills theory, JHEP 07 (2000) 013 hep-th/0003208]; Monte Carlo studies of the IIB matrix model at large N, JHEP 07 (2000) 011 hep-th/0005147;
J. Nishimura and G. Vernizzi, Spontaneous breakdown of Lorentz invariance in IIB matrix model, JHEP 04 (2000) 015 hep-th/0003223; Brane world generated dynamically from string type IIB matrices, Phys. Rev. Lett. 85 (2000) 4664 hep-th/0007022;
Z. Burda, B. Petersson and J. Tabaczek, Geometry of reduced supersymmetric 4D Yang-Mills integrals, Nucl. Phys. B 602 (2001) 399 hep-lat/0012001;
J. Ambjørn, K.N. Anagnostopoulos, W. Bietenholz, F. Hofheinz and J. Nishimura, On the spontaneous breakdown of Lorentz symmetry in matrix models of superstrings, Phys. Rev. D 65 (2002) 086001 hep-th/0104260;
J. Nishimura, Exactly solvable matrix models for the dynamical generation of space-time in superstring theory, Phys. Rev. D 65 (2002) 105012 hep-th/0108070;
K.N. Anagnostopoulos and J. Nishimura, New approach to the complex-action problem and its application to a nonperturbative study of superstring theory, Phys. Rev. D 66 (2002) 106008 hep-th/0108041;
G. Vernizzi and J.F. Wheater, Rotational symmetry breaking in multi-matrix models, Phys. Rev. D 66 (2002) 085024 hep-th/0206226;
T. Imai, Y. Kitazawa, Y. Takayama and D. Tomino, Effective actions of matrix models on homogeneous spaces, Nucl. Phys. B 679 (2004) 143 hep-th/0307007;
J. Nishimura, T. Okubo and F. Sugino, Gaussian expansion analysis of a matrix model with the spontaneous breakdown of rotational symmetry, Prog. Theor. Phys. 114 (2005) 487 hep-th/0412194;
S. Bal, M. Hanada, H. Kawai and F. Kubo, Fuzzy torus in matrix model, Nucl. Phys. B 727 (2005) 196 hep-th/0412303;
H. Kaneko, Y. Kitazawa and D. Tomino, Stability of fuzzy $S^{2} \times S^{2} \times S^{2}$ in IIB type matrix models, Nucl. Phys. B 725 (2005) 93 hep-th/0506033; Fuzzy spacetime with $\mathrm{SU}(3)$ isometry in IIB matrix model, Phys. Rev. D 73 (2006) 066001 hep-th/0510263.
[37] J. Nishimura and F. Sugino, Dynamical generation of four-dimensional space-time in the IIB matrix model, JHEP 05 (2002) 001 hep-th/0111102;
H. Kawai, S. Kawamoto, T. Kuroki, T. Matsuo and S. Shinohara, Mean field approximation of IIB matrix model and emergence of four dimensional space-time, Nucl. Phys. B 647 (2002) 153 hep-th/0204240;
H. Kawai, S. Kawamoto, T. Kuroki and S. Shinohara, Improved perturbation theory and four-dimensional space-time in IIB matrix model, Prog. Theor. Phys. 109 (2003) 115 hep-th/0211272;
T. Aoyama, H. Kawai and Y. Shibusa, Stability of 4-dimensional space-time from IIB matrix model via improved mean field approximation, Prog. Theor. Phys. 115 (2006) 1179 hep-th/0602244;
T. Aoyama and H. Kawai, Higher order terms of improved mean field approximation for IIB matrix model and emergence of four-dimensional space-time, Prog. Theor. Phys. 116 (2006) 405 hep-th/0603146.
[38] S. Iso and H. Kawai, Space-time and matter in IIB matrix model: gauge symmetry and diffeomorphism, Int. J. Mod. Phys. A 15 (2000) 651 hep-th/9903217.
[39] T. Azuma, S. Bal and J. Nishimura, Dynamical generation of gauge groups in the massive Yang-Mills-Chern-Simons matrix model, Phys. Rev. D 72 (2005) 066005 hep-th/0504217.
[40] M.F. Atiyah and I.M. Singer, The index of elliptic operators. 5, Ann. Math. 93 (1971) 139.
[41] K.-Y. Kim, B.-H. Lee and H.S. Yang, Zero-modes and Atiyah-Singer index in noncommutative instantons, Phys. Rev. D 66 (2002) 025034 hep-th/0205010.
[42] H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417 (1998) 141 hep-lat/9707022; Vector like gauge theories with almost massless fermions on the lattice,

Phys. Rev. D 57 (1998) 5417 hep-lat/9710089; More about exactly massless quarks on the lattice, Phys. Lett. B 427 (1998) 353 hep-lat/9801031.
[43] R. Narayanan and H. Neuberger, A construction of lattice chiral gauge theories, Nucl. Phys. B 443 (1995) 305 hep-th/9411108.
[44] P. Hasenfratz, Prospects for perfect actions, Nucl. Phys. 63 (Proc. Suppl.) (1998) 53 hep-lat/9709110;
P. Hasenfratz, V. Laliena and F. Niedermayer, The index theorem in $Q C D$ with a finite cut-off, Phys. Lett. B 427 (1998) 125 hep-lat/9801021.
[45] M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett. B 428 (1998) 342 hep-lat/9802011.
[46] P.H. Ginsparg and K.G. Wilson, A remnant of chiral symmetry on the lattice, Phys. Rev. D 25 (1982) 2649.
[47] J. Nishimura and M.A. Vazquez-Mozo, Noncommutative chiral gauge theories on the lattice with manifest star-gauge invariance, JHEP 08 (2001) 033 hep-th/0107110.
[48] H. Aoki, S. Iso and K. Nagao, Ginsparg-Wilson relation, topological invariants and finite noncommutative geometry, Phys. Rev. D 67 (2003) 085005 hep-th/0209223.
[49] A.P. Balachandran, T.R. Govindarajan and B. Ydri, The fermion doubling problem and noncommutative geometry, Mod. Phys. Lett. A 15 (2000) 1279 hep-th/9911087; The fermion doubling problem and noncommutative geometry. II, hep-th/0006216.
[50] S. Iso and K. Nagao, Chiral anomaly and Ginsparg-Wilson relation on the noncommutative torus, Prog. Theor. Phys. 109 (2003) 1017 hep-th/0212284.
[51] H. Aoki, S. Iso, T. Maeda and K. Nagao, Dynamical generation of a nontrivial index on the fuzzy 2-sphere, Phys. Rev. D 71 (2005) 045017 [Erratum ibid. D 71 (2005) 069905] hep-th/0412052.
[52] H. Aoki, J. Nishimura and Y. Susaki, The index of the overlap Dirac operator on a discretized $2 d$ non-commutative torus, JHEP 02 (2007) 033 hep-th/0602078.
[53] L. Griguolo, D. Seminara and P. Valtancoli, Towards the solution of noncommutative $Y M_{2}$: Morita equivalence and large N-limit, JHEP 12 (2001) 024 hep-th/0110293;
A. Bassetto, G. Nardelli and A. Torrielli, Perturbative Wilson loop in two-dimensional non-commutative Yang-Mills theory, Nucl. Phys. B 617 (2001) 308 hep-th/0107147; Scaling properties of the perturbative Wilson loop in two-dimensional non-commutative Yang-Mills theory, Phys. Rev. D 66 (2002) 085012 hep-th/0205210;
A. Torrielli, Noncommutative perturbative quantum field theory: Wilson loop in two-dimensional Yang-Mills and unitarity from string theory, hep-th/0301091;
L.D. Paniak and R.J. Szabo, Open Wilson lines and group theory of noncommutative Yang-Mills theory in two dimensions, JHEP 05 (2003) 029 hep-th/0302162;
H. Dorn and A. Torrielli, Loop equation in two-dimensional noncommutative Yang-Mills theory, JHEP 01 (2004) 026 hep-th/0312047;
J. Ambjørn, A. Dubin and Y. Makeenko, Wilson loops in $2 D$ noncommutative euclidean gauge theory. I: perturbative expansion, JHEP 07 (2004) 044 hep-th/0406187;
A.H. Fatollahi and A. Jafari, On the bound states of photons in noncommutative quantum electrodynamics, Eur. Phys. J. C 46 (2006) 235 hep-th/0503078;
A. Bassetto, G. De Pol, A. Torrielli and F. Vian, On the invariance under area preserving diffeomorphisms of noncommutative Yang-Mills theory in two dimensions, JHEP 05 (2005) 061 hep-th/0503175;
M. Cirafici, L. Griguolo, D. Seminara and R.J. Szabo, Morita duality and noncommutative Wilson loops in two dimensions, JHEP 10 (2005) 030 hep-th/0506016.
[54] L.D. Paniak and R.J. Szabo, Instanton expansion of noncommutative gauge theory in two dimensions, Commun. Math. Phys. 243 (2003) 343 hep-th/0203166.
[55] L. Griguolo and D. Seminara, Classical solutions of the TEK model and noncommutative instantons in two dimensions, JHEP 03 (2004) 068 hep-th/0311041.
[56] C.R. Gattringer, I. Hip and C.B. Lang, Quantum fluctuations versus topology: a study in $\mathrm{U}(1)_{2}$ lattice gauge theory, Phys. Lett. B 409 (1997) 371 hep-lat/9706010;
[57] D.J. Gross and E. Witten, Possible third order phase transition in the large N lattice gauge theory, Phys. Rev. D 21 (1980) 446 .
[58] K. Nagao, Admissibility condition and nontrivial indices on a noncommutative torus, Phys. Rev. D 73 (2006) 065002 hep-th/0509034.
[59] H. Aoki, J. Nishimura and Y. Susaki, work in progress.
[60] H. Fukaya and T. Onogi, θ vacuum effects on the chiral condensation and the η^{\prime} meson correlators in the two-flavor massive $Q E D_{2}$ on the lattice, Phys. Rev. D 70 (2004) 054508 hep-lat/0403024; Lattice study of the massive Schwinger model with θ term under Lüscher's 'admissibility' condition, Phys. Rev. D 68 (2003) 074503 hep-lat/0305004.
[61] P. Aschieri, J. Madore, P. Manousselis and G. Zoupanos, Dimensional reduction over fuzzy coset spaces, JHEP 04 (2004) 034 hep-th/0310072;
P. Aschieri, T. Grammatikopoulos, H. Steinacker and G. Zoupanos, Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking, JHEP 09 (2006) 026 hep-th/0606021;
H. Steinacker and G. Zoupanos, Fermions on spontaneously generated spherical extra dimensions, arXiv:0706.0398.
[62] K. Landsteiner, E. Lopez and M.H.G. Tytgat, Excitations in hot non-commutative theories, JHEP 09 (2000) 027 hep-th/0006210; Instability of non-commutative SYM theories at finite temperature, JHEP 06 (2001) 055 hep-th/0104133].
[63] C.P. Martin and F. Ruiz Ruiz, Paramagnetic dominance, the sign of the β-function and UV/IR mixing in non-commutative U(1), Nucl. Phys. B 597 (2001) 197 hep-th/0007131; F.R. Ruiz, Gauge-fixing independence of $I R$ divergences in non- commutative $\mathrm{U}(1)$, perturbative tachyonic instabilities and supersymmetry, Phys. Lett. B 502 (2001) 274 hep-th/0012171.
[64] A. Bassetto, L. Griguolo, G. Nardelli and F. Vian, On the unitarity of quantum gauge theories on noncommutative spaces, JHEP 07 (2001) 008 hep-th/0105257.
[65] M. Van Raamsdonk, The meaning of infrared singularities in noncommutative gauge theories, JHEP 11 (2001) 006 hep-th/0110093.
[66] A. Armoni and E. Lopez, UV/IR mixing via closed strings and tachyonic instabilities, Nucl. Phys. B 632 (2002) 240 hep-th/0110113.
[67] Z. Guralnik, R.C. Helling, K. Landsteiner and E. Lopez, Perturbative instabilities on the non-commutative torus, Morita duality and twisted boundary conditions, JHEP 05 (2002) 025 hep-th/0204037.

[^0]: ${ }^{1}$ The Ginsparg-Wilson Dirac operator for vanishing gauge field was constructed earlier in refs. 49.

[^1]: ${ }^{2}$ At finite ϑ, the agreement holds only when the physical area surrounded by the Wilson loop is much smaller than ϑ. As a consequence, the relation (2.4) agrees with the one required for the continuum limit of the $\mathrm{SU}(\infty)$ lattice gauge theory 57].

[^2]: ${ }^{3}$ Strictly speaking, we need to have the ordinary (commutative) time in order to be able to speak about a "vacuum". We may think of, for instance, four-dimensional space-time with non-commutativity introduced only in two spatial directions 19. Let us also remind the readers that the parameter θ should not be confused with the non-commutativity parameter ϑ.

